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ABSTRACT

A maximum entropy (disorder) principle is used to determine the velocity distribu-

tion functions in a quiescent plasma (case 1), a current-carrying plasma (case 2), and

viscous plasma (case 3). The Saha equation (at the electron temperature) holds for case 1.
and modified Sana equations hold for cases 2 and 3. The modification in case 2 is

important only in situations where the directed energy of the electrons is a substantial

fraction of the total energy. The results of case 3 are presented in a general form and

need simplification before they can be applied to a specific situation.
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THERMODYNAMIC STUDY OF PLASMAS USING THE

PRINCIPLE OF MAXIMUM ENTROPY

by Norbert Stankiewicz

Lewis Research Center

SUMMARY

The information theory idea of maximum entropy (disorder) is used to determine the
most probable distribution functions of a species in a quiescent plasma (case 1), a
current-carrying plasma (case 2), and a viscous plasma (case 3).

The Saha equation (at the electron temperature) holds for case 1; a modified Saha
equation, which is dependent on the current density, holds for case 2; and a result, which
is dependent on the off-diagonal elements of the pressure tensor, is obtained for case 3.

The modification in case 2 is important only in situations where the directed energy
of the electrons is a substantial fraction of the total energy (i. e. electron diffusion
Mach numbers, ~1).

The results of case 3 are presented in a general form and need simplification before
they can be applied to a specific situation. This case, however, is illustrative of the
method presented herein and of its possible extension.

INTRODUCTION

The properties of a plasma can be expressed in terms of averages over the distri-
bution function of its constituent species. Unfortunately these distribution functions are
rarely either directly measurable or known beforehand, hi some instances, the maxi-
mization of entropy offers a means by which these distribution functions can be deduced
if certain constraints on the plasma are given. This report explores the application of
the maximum entropy principle to various plasma states. In particular, the maximum
entropy principle is applied to nonequilibrium systems.

Related studies include a paper by Holway (ref. 1), which contains a discussion of
an elliptical probability function derivable from a maximum entropy principle. This
function is used to construct a kinetic collision model; the Lagrange multipliers are
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identified in terms of the expansion coefficients of the distribution function (Chapman-

Enskog expansion).

Kogan (ref. 2) investigates the relation between the most probable distribution func-

tion and the moments of the Boltzmann equation. The most probable distribution function

is found by maximizing the entropy with the moments as constraints. His approach is

similar to Holway’s in that he compares the most probable distribution function with the

Chapman-Enskog expanded distribution function.

A paper by Potapov (ref. 3) on the thermodynamics of a multispecie plasma with

internal degrees of freedom is also of interest. He uses equilibrium thermodynamics to

describe situations in which some species and degrees of freedom are not at the same

temperature. His results, however, do not agree with the kinetic two-temperature

results found in studies such as those of Bates, et al. (ref. 4).
In constrast to the previously cited work, this report is concerned with the appli-

cation of the maximum entropy principle to systems having variables other than those

found in the usual thermodynamic system.

According to information theory (see Jaynes, ref. 5), the most probable state of a

statistical system is one in which the disorder is a maximum consistent with the given

information about the system. (In the thermodynamic application of information theory,

the equivalence of entropy and disorder is assumed. Any measurement on the system or

information about the system can only subtract from the total disorder. The information

plays the role of a state function in the thermodynamic system and serves to constrain the

system.
Information theory is equally applicable to equilibrium or nonequilibrium conditions.

Equilibrium in the conventional sense becomes not a general result of the maximization

of entropy, or disorder, but a result depending on specific constraints. The papers by

Tribus (ref. 6) contain interesting arguments that support this idea.

The three cases presented for which the idea of maximum entropy was used are the

following:

(1) Case 1: quiescent plasma

(2) Case 2: current-carrying plasma

(3) Case 3: viscous plasma

Case 1 is presented to illustrate the maximum entropy approach. The important

point is that the analysis yields the conventional or accepted result for a simple case.

Thus the analysis gains credibility for application to more complex cases.

SYMBOLS

A determinant defined in eq. (45)
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C electron acoustic velocity (defined following eq. (40))
Hi

E. energy of j state as measured from continuum

EQ energy of ground state as measured from continuum

e electronic charge

F density in phase space (six dimensional)

f dimensionless distribution function

h Planck’s constant

J current density (defined in eq. (32))

k Boltzmann constant

M electron diffusion Mach number (defined following eq. (40))e

m ,m.,m,^ mass of electron, ion, and neutral atom (m. m,j)
n number density

n,, number density of nuclei (nr> n^ + n.)

p linear momentum density

S entropy density of system (defined in eq. (1))

T temperature
g
U stress energy density (defined in eq. (41))

u energy density defined in eq. (41))

x fraction ionization

Z partition function of electron states of neutrals

cr, function defined in eq. (47)

f’ Lagrange multipliers conjugate to stress energy densities introduced in

eq. (42)

e. energy of j state

\ Lagrange multiplier conjugate to energy density (reciprocal tempera-

tures)

^ Lagrange multiplier conjugate to momentum density

^ velocity with respect to center of mass

T dimensionless current (defined following eq. (36))

\{/ function defined in eq. (46)

3
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0 Lagrange multiplier conjugate to number density

w degeneracy

Subscripts:

e electron

I internal energy

i ion

j j^ state

N neutral

Mathematical notation:

6 variation of
}

d ^ shorthand for the three velocity coordinates d^i d^o d^o

(> average value

vector symbol

^ dyadic symbol

absolute value

ANALYSIS

For the purposes of this report, the definition of the entropy density is

Q

S -^(m\ f t(ln i l) d3^ (1)

where o> is the degeneracy (a; 2 for electrons), m is the particle mass, h is Planck’s
0

constant, d ^ is shorthand for the three velocity coordinates d^, d^g, and d^o, and f

is the dimensionless distribution function.

The factor o;(m/h) arises from the correspondence principle (see Hill, ref. 7,
p. 80) in passing to the classical limit (for free particles in a box) from the discrete to

the continuous distribution function.

The relation between the distribution function f and the density F in phase
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space (six-dimensional) is given by

r ^)\ (

o
The maximum density in phase space is o>(m/h) for the completely degenerate gas, for
which case f 1. The entropy, as given in equation (1), has a maximum at f 1.
Taking a variation of equation (1) gives

58 ^^/"^ y Sf ln f d^ O

or

f 1

This entropy maximum is taken to be the state of greatest disorder, that is, the com-
pletely chaotic condition.

Grad (ref. 8) points out that a given system has many entropies depending on

those properties that the observer wishes to study. Once the system and the relevant
measurements are defined, any quarrel between two observers over the proper choice of
entropy implies that they are interested in different phenomena.

The system under consideration in this study consists of a gas mixture of electrons,
ions, and neutral atoms. (The neutrals are in various levels of excitation. ) A series of
measurements with respect to the system center of mass are assumed to yield a know-
ledge of various moments of the distribution function of each species. Moreover, it is

assumed that an entropy function of the form given in equation (1) can be written for each

species.

The entropy density of each species is maximized subject to the imposed constraints

(i. e. the moments), the constraints are introduced by the method of Lagrange’s
undetermined multipliers. This introduction yields the most probable distribution for
each species in terms of the undetermined multipliers. Since there is one undetermined

multiplier for each constraint, the equations of constraint can be used in principle to
determine the Lagrange multipliers. The distribution function of each species is then

uniquely determined in terms of the assumed measurable information.
The thermodynamics of the study begins when the relations between the Lagrange

multipliers of the various species are investigated. Either by hypothesizing or by
reviewing the previous measurements, one can conclude, for example, that the system
is charge neutral, that at each station the sum of the ion and the neutral densities is a
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constant, or that thermal equilibrium exists between free and bound electrons. This

information, which is a subset of the measurements that led to the choice of constraints,

is called the auxiliary information. The auxiliary equations are based on the usual

plasma models, and the final results are limited to the accuracy of this model. The

auxiliary equations, however, do not limit the validity of the maximum entropy viewpoint.

They can be replaced by more accurate expressions with no alteration in the choice of

constraints.

Analysis of Case 1: Quiescent Plasma

For the analysis of a quiescent plasma, a series of measurements with respect to

the system center of mass is assumed. Through these measurements the following

moments can be inferred:

Number densities:

"e ^Q A^e ^

(m.\3 r q

"i ^ A^i (3b’

V--\ 3
\ /m,,T\ /* i

"N E i ^"i^) A d ^ (3C)

J

Kinetic energy densities:

^^H^y^e^e
^\^--^f^^\
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"N J^N ^) ^ ^("h^) / ^N^ d3^) (4C)

J v /

Internal energy density:

v-\ 3

"I S Yj^ ^p) /^N (^

3 J

Equating the moments (eqs. (3) and (4)) to their measured values gives the set of con-

straint equations.

The entropy equations for the species are (from eq. (1))

g

se "2^) /^" ’e 1^ (5a)

(^A y ^s! -^i -+/-) J ii(ln f! 1) d ^i (5b)

Z 3

SN w^) y^^ ^ 1^3^ (5C)

j

and the variational equations are

6S 0 5n X 6u 0 (6a)e e e e e

SS^ 0^6n^ X^5u^ 0 (6b)

6S^ ON^N ^N^N h^l (6C)

where O’s and X’s are the Lagrange multipliers.
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Substituting equations (3), (4), and (5) into equations (6) gives

3

-2(!^) /^ie + ^e +\^e^V (7a)

3

^G) /^^^i ^i^i^^ 0 (7b)

Z v3

w\^} /^ (^^ "N ^N^N^ ^I^^N- 0 (7C)

Because the variations are arbitrary,

^ ^-\l’2m^ (Sa)

^.-W2^ ^
; ^-"N^N 1/2 "N^-^I6)

^
Substituting equations (8) into equations (3) gives the number densities

/^Trm X372 -S2,
"e 2 ----) e e (9a)

Ve^ /

2-nm. \3/2 -Sl.

"i ^i ----) e 1 (9b)

W /

-Xl. / 27nn \3/2 -^"r ^ 6 -n e (9C)

V^N11 /
8



The zero of energy for the bound states is taken as the zero of kinetic energy, so that

the levels e. are negative (e- -E.) in this frame of reference. Thus,
j j j

E / 27mij.\3/2 -O^+XjE.
"N "j ---^} e N ’ o z^ <10)

^
\ ^7

where

Z -Xi(Eo-E_)
Z(X;) ^e

l (11)

J

is the partition function of the bound states, and for moderate temperatures its value is

the ground state degeneracy w^.
Because

-m-^e (12)
Q

the energy densities can be written as

/ \ 3n’ "^ (O-6 (13)
2 e e \ e/ ^ \?

From equations (4) and (9),

^ l m ^\. 2 ^ (14a)
Xg 3 e \e / 3 n^

J- ^ m,^ 2 ’1! (14b)

^ 3 x \1/ 3 n^

1 ! /,,2\_ 2 "N /i

^^ ^N^ , (14C)
X^ 3 \ / 3 n^
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Equations (14) allow the identification of the X’s as reciprocal temperatures 1/kT
(see ter Harr, ref. 9, p. 3). It is assumed that Xy is also a reciprocal temperature.

Combining equations (8) and (5) yields

Se ("e + ^e + Ve ^e’u^ (15a)

S^ (S^ + l)n^ + \^ S^n^u^) (15b)

SN ("N + ^"N + ^N + ^I"! s(nN’ "N’^ ^15C^

The O’s and X’s are functions of the n’s and u’s because of the equations of con-

straint.

It is easily verified that

/3So\ /^.Ae o e T|n X

V^e/u V^o/n
e e

/9S,\ /9S,\
_2 (_L\

^ , (16)

W/u, Wn,

^ ^ ^9SN^ X ^"N’ ^N’ "^- Il anj N \ 9u y ^ \ Bu ;
\ "/UN, Uj ^ S^I v ’"N^N

An arbitrary change in the system entropy is given by

dS d(Sg + S^ + S^) Og dn^ + 0^ dn^ + 0^ dn^ + Xg dUg + X^ du^ + Xy du^ + Xj dUj

(17)

The auxiliary equations relating the densities of the various species are assumed to be a

charge neutrality

ng n^ (18a)
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and a constant number density of nuclei

n^ + n^ np (18b)

The relaxation time of the free and bound electron subsystem is much shorter than

that between the heavy species and the electrons. Thus, in a plasma a metastable equi-

librium may exist, which leads to the two-temperature model (see Kerrebrock, ref. 10).
Because of these inherent relaxation times of the system, the following auxiliary equa-

tions relating the changes in the energy densities of the various species are reasonable:

dug -duj (19a)

du^ -du^ (19b)

Because the system entropy is also a maximum, dS must vanish, and equation (17),
with substitutions from equations (18) and (19), becomes

(Og + ^ 0^) dug + (Xg Xj) dug + (^ X^) du^ 0 (20)

Since dn du and du. are arbitrary nontrivial changes, it follows that
C C J.

Og + 0^ f^ (2la)

Xg \i (21b)

\ XN (21c)

When equations (9a) and (b) and equation (10) are solved for the O’s, equation (2 la)
becomes

n^ n^ ^_ /27rm \3/2 ^Ep (22)

1 x n^ ~^)^2 j
where equations (21b) and (21c) have been used in simplifying the relation, and the frac-

tion ionization is x n./n,,. This equation is the Saha relation as used in the two-

temperature plasma model (ref. 10) in which the electron temperature is elevated over

the gas temperature.
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Analysis of Case 2: Current-Carrying Plasma

For the analysis of a current-carrying plasma, the measurements of the system are

assumed to indicate that diffusion of the three species with respect to the center of mass

is occurring. Thus, in addition to the number and energy densities (eqs. (3) and (4)), the

following moments are present:

3
/-^\ /m. \ r o

PC V^ <^e) \-^) J ^e^e< ^
3

\ /m. \ /

pi 5 "^i ^i)- -i(^) y ^i^ d^ (23b)

E 3
/- \ /m’M\ y ^PN WN^N> ct)j^) 7 ^N^N ^N (23C)

The equations of constraint now include these moments set equal, to their measured

values. The variational equations are then

5Sg OgSng /lg 6pg Xg6Ug 0 (24a)

6S. n.6n^ jiT. 6p^ ^6u^ 0 (24b)

6S^ S2^5n^ ^ 6p^ X^Su^ X;6u; 0 (24c)

which yield

-0 -? m IL-X- 1/2 m. ^2
f e e e e e e e e (25a)
C

-O.-iiT. m.^-X, 1/2 m,^2
^ e 1 1 lsl 1 lsl (25b)

^ ^N-^N mN^N-XN 1/2 mN^-XIj
(25^
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These equations can be shown to represent Maxwellian distributions for each species in

its own center-of-mass frame of reference. The corresponding number densities are

n 2/^e V^2 ^e-^e/2^2^)
/,. ,n 2(---- I e (26a)

I 9Ve"2 /

/ 27rm, \3/2 -S2,+(m,/2)(^2/x,)
^i ----) e l 1 ’ 1 (26b)

W2/

n. ..e-’i^ / ^N^2 ^m^^ ^c)
3 W2 /

"N V "i (^f2 e-^N^-N^X^^N^O , ^^/ l 9/ . v^ /
j

where Z(X.r) is the partition function defined in equation (11).
Equations (23) yield

/Te^)’ 40 (27a)
\ / ^
/-\ ^i/ ^ \= -J- (27b)
\ 1/ ^
(TN) ^ (^)
\ / A^

and the energy density equations (see eq. (4)) yield

13



^(<4>- <ie>2)
c

1 "^i // 9\ /-\9\A^ w \v y (28b)

1 ""N /A2\ /T\2\ ,o^

^ yW <^ J (28C)

Thus the A’s are again measures of the mean random energy and can be identified as

reciprocal temperatures (1/kT) (see e.g. ter Haar, ref. 9, p. 17). Again it is assumed

that XT is also a reciprocal temperature of the bound states.
The equations for the entropy of each species for the current-carrying case become

Sg (Og + l)n^ + ?g pg + XgUg (29a)

8^ (^ + l)n^ + ^ p^ + x^ (29b)

S^ (0^ + l)n^ + ?N PN + ^N + ^-I11! ^29C^

where the O’s, X’s, and ju’s are functions of the n’s, u’s, and p’s through the equa-

tions of constraint. As in case 1, it can be shown that

/3S \-e) "eW

t386} XW e

gradp S^ ^
and similar identities for the other species. An arbitrary change in the system entropy

s s^ s^ s^
14



r

is then

dS S2g dn^ + 0^ dn^ + 0^ dn^ + /Ig- dp^ + ^ dp^ + ^ dp^

+\ ^e + ^i ^i + ^N ^N + ^1 ^I (30^

The auxiliary equations for case 2 are assumed to be the same as those for case 1

* (see eqs. (18) and (19)). In addition, from the definition of the center-of-mass velocity,

it follows that

’Pe + ^ + PN (31)

Because of the diffusion among species, charges will be transported and cause a current

density

J ^-U (32)
V"1! "W

Note that the electric field causing the diffusion of charges has been tacitly assumed. Any

effect of the electric field other than the diffusion of charges is disregarded.

Withthe auxiliary equations substituted, equation (30) (for a constant current density)

becomes

(m ju + m. p.. m,.r/^j)
(0 + ^ 0^) dn^ + -e-e---1-^--N-N- dpg + (Xg ^) dug + (X^ X^) du^ 0

"^ (33)

from which it is concluded that

Og + ^ ^ (34a)

"^e^e + ’^i^i "^N^N ^34b^

Xg Xj (34c)

X^ \N (34d)

15



Equations (34) and (26) give the equivalent of the Saha equation for the flowing system

as

f

n^ x\ 2^e-e O ^m X3/2

^ ^^N (^ ^e) \X,h2 /
\ e / -where

^m^m^_ m^|
^x2 ^e ^i ^N

The fraction ionization is

x "L
"0

and the dimensionless current is

T’- ^T72^\ 2 / ^O

Equations (31), (32), and (34b) can be used to write equation (36) as

/- ~\

"ip ^p "^p
1 + (1 2x) -e- -e- + 2x -e-

T2^ 1^^ ________mN ^ "^ (37)
x2 2e2n2 m \ m 2 ^

e l + d ^ -l -^ + x -6-
m^ X^ m^

^

Because of the mass difference between the electrons and the heavy species,

equation (37) reduces to

^,2 m X J2
1- a e e (38)
x2 20^

16



Case 2 can be compared with case 1 if equation (35) is combined with the Saha equa-
tion given in equation (22) (with the subscript s denoting Sana added). Thus,

2 (1 x ) ,.,2/ 2x- ---s- el /x (39)
x2 ^ ^-s

Equation (38) can be written in terms of the electron diffusion velocity and Mach
number as

^^^X.

where

. M
e

^
and the electron acoustic velocity is

/ 5 \1/2
C f-"-\

V^eW

Analysis of Case 3: Viscous Plasma

A viscous fluid is characterized as one having a nondiagonal pressure tensor. For
the case under consideration, the relevant constraints are the number densities (eqs. (3)),
the momentum densities (eqs. (23)), the internal energy density of the bound states
(eq. (4d)), and the stress energy densities defined in the following equations:

3

e ^e(U> 2^) f ^eMe d^ (41a)

S /--A /"^A3 /* 3U, Vn^^> c.^ j i^^d^ (41b)

17



V--\ 3
ft /-< \ \ /"^wV y i

^ "N^NW ^ ^-Y-; 7 ^N^N ^N (^^

-r’
The variational equations are

i

6Sg ng6ng ^ 6pg ?g 6Ug 0 (42a) ,:

6S^ ^6n^ ^ 6^ r^ 6U^ 0 (42b)

6S^ "N6^ ^N ^N ^N ^N ^I6"! (42C)

The distribution functions are

, ^-"e-^ meTe-eIe ; ?e ?e
^j’’,^ e .f

^ ,

^ ^-^-^.
m,^m^, ri tt

^
^ <

f. e’""’"" "N^N^NiN ^ SN-^J (4g^

The corresponding densities are

n ^f ^^e ^,
e i e

\ u" I\h /

/m.TT ^72 i/, ^.-0,
"i ^-^) Ai l/2e l 1

^

^ ^ ^^/\-^2e^ (44c)

18
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E xrEp / m^^ \ ,/n i^j-^-M-
n^ n^ e 1 Z^) -^-) A^/VN N

^v 11 /

where

^ll ^12 ^13
A det r^ T^ F23 (45)

^IS ^S ^33_

and

^ S: (^Q111 + ^Q!22 + /’^33 + "i^0’^ + V^is + ^^s^s) <46)

where

"k^ -^- (^)
^kZ

Arguments similar to those of cases 1 and 2 lead to the following result:

n^ 20^/A^Y2 /^A372 ^e^i-^N
"N ^^ V^i/ V h2 /

Equation (48) is written in terms of all the Lagrange multipliers; only diffusional equi-

librium is assumed (eq. (34a)). Simplifying relations that have not been investigated may
exist.

RESULTS AND DISCUSSION

The principle of maximum entropy (disorder) has been applied to three cases of

plasma behavior: quiescent, current carrying, and viscous. The following Sana-type
equations were found:

19



n n, 2 2h),e-xe / 27rm \3/2
-^- =nQ J-- ^---- ---e-} (22)
"N ^ ^ \X^2 )
n n, 2a)_e-xe /27rm \3/2 ^,2 2
.gj^ 1 (__e- ! eT /x (35)
"N z^ \ X h2 /

e

-XrE,, \V2 l/9

n^ 2a^e
I /AN \ ^ Y e^i-^N ^"N z^) ^i/ \ h2 /

The results of case 1 are, of course, well known. This case was presented as a

simple illustration of the procedure used in the later sections of this report.

Equation (39) from case 2 is plotted in figure 1. The parameter T is a dimension-

less current, and x is the fraction ionization n./n^ of the gas. The intercepts are the

normal Saha conditions (case 1) for the same temperature and density of nuclei np.
The line of the electron Mach number, M 1, drawn in figure 1 indicates that an

C

effective increase in fraction ionization occurs only in situations in which the directed

energy of the electrons is a substantial fraction of the total energy. However, in such

highly directed streams, other factors such as instabilities may contribute to modify the

results.

With the acknowledgment of these limitations and qualifications, it is interesting to

examine the application of these results to cesium and argon plasmas. Figures 2 (a) and

(b) are plots of the fraction ionization as a function of the actual current density for var-

ious initial fraction ionizations for cesium and argon, respectively. A nuclei density of

1020 per cubic meter is assumed in both these figures. In figure 3, the fraction ioniza-

tion as a function of nuclei densities is compared for cesium and argon. The Saha tabu-

lations of Drawin (ref. 11) were used to make these plots.

The results of case 3 (viscous plasma) are cursory, and they are presented only to

point out another possible application of the maximum entropy method. Further reduc-

tion of this case is beyond the scope of this report.

LIMITATIONS AND CONCLUDING REMARKS

The primary limitation of the method presented in this report is its restriction to

mixtures of ideal gases. Extension of the method to nonideal gases would entail an

20



entropy function that would take into account correlations among particles.
The second limitation is the choice of auxiliary equations that enable one to find rela-

tions among the Lagrange multipliers of each species. If there are no interactions

between species, then there will be no relations (except accidental ones) between the
Lagrange multipliers. The distribution functions in this case would be independent of
each other. In a sense, the auxiliary equations are the results of interactions, and a

rigorous treatment would demand solving for the kinetic rate processes. The choice of
auxiliary equations used in this report are therefore subject to review in any real plasma
problem.

The justification for the assumption that the free and bound electrons exchange energy
to the exclusion of electron-heavy particle interactions (and radiation losses) is based on
previous studies. Kerrebrock (ref. 10) discusses the electron heating phenomena and the
two-temperature plasma model. The validity limits of the Saha equation for radiationless
plasmas are discussed by Griem (ref. 12) and also in a previous publication by the author
of this report (ref. 13). These studies are based on the comparison of lifetimes of atomic

states and are thus beyond the realm of thermodynamics. It is sufficient to know that

such regimes exist.

The study of the current-carrying plasma in case 2 is based on the same assumptions
used for case 1. The effect of the current flow is an enhancement of Sana’s equation

(see eq. (39) and fig. 1). The current densities at which an appreciable effect occurs are
much higher than those currents considered by other authors. For this reason, a com-
parison of the thermodynamic result to the kinetic approach of Dugan, et al. (ref. 14) is

not possible. Likewise, the measurements made by Solbes (ref. 15) are not of a suf-

ficiently high current density to prove or disprove the effect. With respect to figure 1,
it is likely that one would have to look for the effect in shock waves, in high density arcs,
or in some other device in which the directed energy of the electrons is great.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 6, 1968,
129-02-01-07-22.
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Figure 1. Fraction ionization as function of normalized current density for various initial fraction ionizations.
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Figure 2. Fraction ionization as function of current density for various initial fraction ionizations with nuclei

density of 1020 per cubic meter.
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Figure 3. Comparison of cesium and argon fraction ionization as function of current density with nuclei densities

of 1020 per cubic meter at initial fraction ionization of 0.5.
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